
UNC LAS SFLED
7SEU,:t [LID'I , LAS! [I A"'10% 01 '1-1: SPA ,! (10,'e o-.# l'Entered'

REPORT DOCUM[NIAT ION PAGE :, -

I. SIPOI I jobiR 12. GOv ACCESSIDO 11,. 3. RICAPII-Lh S CA1AOG k t. jU

4. hILLi Ic, ?'t~e; b. IYPL OF RIPO01 A PEAIO:, COERED

Ada Compiler Validation Summary Report: MHIPS i4 June 1989 to , -June 1990

Computer Systems, IPS i-DA, Vtr. iot 2.10, MIPS M/120 (bos: e. PLftOftIRA <-SPO,

& Target), F90o14W1.10()9L

7. £hokPsj) 9. COhAAA1 Of 6AA47 bL*j4Ejj)

Wrig?'I-Patterson AFE

Dayton, OF, USA

S. PLRFORNINk OR ANZA:10% A ADDkLS 10. PRMOAIW [bI[%'. PF,2E:1. TAS,

AREA I WD'k Uh2! NUMEERS
Wright-Patterson AFB

Dayton, OR, USA

11. CDR0L1 OFFICE k&S'E A%: ADDRESS 12. R[PORI DAIL
Ada Joint Program Office
United States Department of Defense 1J. XJw u F
Washington, DC 2 301-3081

14. W)ONIIORQPj AaLENY %ANi & ADDR SS(Ifaifteret from ControuIngOHiCe) I . SECLIRPiu CLAS$ (Ofth ,repOM)
U NC LASS! Fl ED

Wright-Patterson AFB
:Ua NLA S IE.D

Dayton, O, USA N/A

'~J RjBJTIOh SIAIETMEN (ofthseporT)

)ved for public release; distribution unlimited.

"%J P,.7.D9 $'*jb'LW. (C't~te a , ea c e? , .. ca(2:. Ifo'erprIt fromRep,')

DTIC
0 S ELECTE

13. I _^AS (Conttnve O0"M'CvCfs'09 ifn vtcem) Or odent,t b) block numbei,)

Ada Pro;7a,-..ing language, Ada Copiler Validation S'urm.a:y Rep::t, Ada
Conpiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSI A'A1 (Continue onreverseie t ce ., n ,e.t?#) b, block ,hmtber)

MIPS Computer Systems, MIP?" ADA, Version 2.10, Wright-Patterson AFB, MIPS M/120 under

RISC/os, 4.0 (Host & Target), ACVC 1.10.

DD "'", 1473 [wiuo, OF I Wsh 65 IS OBSD,[I[
I JAN 73 SIN 0102-LF-01d-66CI LINCLASSIFIMD

StUI'V1'i CLkSS;j[A1ID Or 104IS PA~i (Whem cDotIEtered,'

AVF Control Number: AVF-VSR-296.0689
89-01-18-MIP

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 890614W1.10098
MIPS Computer Systems

MIPS ADA, Version 2.10
MIPS M/120

Completion of On-Site Testing:
14 June 1989

Prepared By:
Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington DC 20301-3081

Ada Compiler Validation Summary Report:

Compiler Name: MIPS ADA, Version 2.10

Certificate Number: 890614V1.10098

Host: MIPS M/120 under
RISC/os, 4.0

Target: HIPS M/120 under
RISC/os, 4.0

Testing Completed 14 June 1989 Using ACVC 1.10

This report has been reviewed and is approved.

Ada Validaton Facility
Steve P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Ad idation Organi ation
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond NTIS GA&I

Director DTIC TA
Department of Defense Unanno=uced 0
Washington DC 20301 Justiflsatien

By
Dtstribution/

Availability Codas
Avati ana/or

Dist Special

tlN

Ada Compiler Validation Summary Report:

Compiler Name: MIPS ADA, Version 2.10

Certificate Number: 890614W1.10098

Host: MIPS M/120 unoer
RISC/os, 4.0

Target: MIPS M/120 under
RISC/os, 4.0

Testing Completed 14 June 1989 Using ACVC 1.10

This report has been reviewed and is approved.

Ada Validation Facility
Steve P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Ada Validation Organization

Dr. John F. Kramer
Institute for Defense Analy
Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond
DirectO
Department of Defense
Washington DC 20301

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2
1.3 REFERENCES. '1-3
1.4 DEFINITION OF TERMS 1-3
1.5 ACVC TEST CLASSES 1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED2-1
2.2 IMPLEMENTATION CHARACTERISTICS2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2
3.4 WITHDRAWN TESTS3-2
3.5 INAPPLICABLE TESTS3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS. . 3-5
3.7 ADDITIONAL TESTING INFORMATION3-6
3.7.1 Prevalidation3-6
3.7.2 Test Method3-6
3.7.3 Test Site3-7

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

APPENDIX E COMPILER OPTIONS AS SUPPLIED BY MIPS COMPUTER SYSTEMS

CHAPTER 1

INTRODUCTION

This Validation Summary Report 'VS"R describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/KIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
retorts the results of tepting this compiler using the Ada Compiler
Validation Capability, (ACVC)."I An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as input. to an Ada compiler and
evaluating the results." The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation-dependent but is permitted by the Ada Standard. Six classes
of tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

1-1

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

* To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

* To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

* To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc. under the
direction of the AVF according to procedures established by the Ada Joint
Program Office and administered by the Ada Validation Organization (AVO).
On-site testing was completed 14 June 1989 at Sunnyvale CA.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C.#552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented oi; the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 203,1-3081

or from:

Ada Validation Facility
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

1-2

INTRODUCTION

Ouestions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Languae,
ANSilMIL-STD--X--e-u y 1983 and ISO8632-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 JanuaryT7.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the
Commentary point addressed by a comment on the Ada Standard. These

comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative a:id technical
support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including

1-3

INTRODUCTION

cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected
result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more
files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce compilation or link errors because of
the way in which a program library is used at link time.

Class A tests ensure the successful compilation of legal Ada programs with
certain language constructs which cannot be verified at compile time.
There are no explicit program components in a Class A test to check
semantics. For example, a Class A test checks that reserved words of
another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every

1-4

INTRODUCTION

illegal construct that it contains is detected by the compiler.

Class C tests check the run time system to ensure that legal Ada programs
can be correctly compiled and exectted. Each Class C test is self-checking
and produces a PASSED, FAILED, or NOT APPLICABLE message indicating the

result when it is executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse tc compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the Ada
Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
Bowever, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is rejected
by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated. In some cases, an implementation may legitimately
detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECK FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation .f REPORT and CHECK FILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate

1-5

INTRODUCTION

tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by shoving that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: MIPS ADA, Version 2.10

ACVC Version: 1.10

Certificate Number: 890614W1.10098

Host Computer:

Machine: MIPS M/120

Operating System: RISC/os
4.0

Memory Size: 32 megabytes

Target Computer:

Machine: MIPS M/120

Operating System: RISC/os
4.0

Memory Size: 32 megabytes

2-1

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

a. Capacities.

(1) The compiler correctly processes a compilation containing 723
variables in the same declarative part. (See test D29002K.)

(2) The compiler correctly processes tests containing loop
statements nested to 65 levels. (See tests D55A03A..H (8
tests).)

(3) The compiler correctly processes tests containing block
statements nested to 65 levels. (See test D56001B.)

(4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to 17
levels. (See tests D64005E..G (3 tests).)

b. Predefined types.

(1) This implementation supports the additional predefined types
TINY INTEGER, SHORT INTEGER, and LONG FLOAT in package
STANDARD. (See tests-B86001T..Z (7 tests).)

c. Expression evaluation.

The order in which expressions are evaluated and the time at which
constraints are checked are not defined by the language. While
the ACVC tests do not specifically attempt to determine the order
of evaluation of expressions, test results indicate the following:

(1) None c' the default initialization expressions for record
compore- . are evaluated before any value is checked for
membe7 -. in a component's subtype. (See test C32117A.)

(2) Assignmer- for subtypes are performed with the same precision
as t e bare type. (See test C35712B.)

(3) This implementation uses no extra bits for extra precision and

2-2

CONFIGURATION INFORMATION

uses all extra bits for extra range. (See test C35903A.)

(4) Sometimes CONSTRAINT ERROR is raised when an integer literal
operand in a comparison or membership test is outside the
range of the base type. (See test C45232A.)

(5) Sometimes NUMERIC ERROR is raised when a literal operand in a
fixed-point comparison or membership test is outside the range
of the base type. (See test C45252A.)

(6) Underflow is gradual. (See tests C45524A..Z.)

d. Rounding.

The method by which values are rounded in type conversions is not
defined by the language. While the ACVC tests do not specifically
attempt to determine the method of rounding, the test results
indicate the following:

(1) The method used for rounding to integer is round to even.
(See tests C46012A..Z.)

(2) The method used for rounding to longest integer is round to
even. (See tests C46012A..Z.)

(3) The method used for rounding to integer in static universal
real expressions is round to even. (See test C4AO14A.)

e. Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT.

For this implementation:

(1) Declaration of an array type or subtype declaration with more
than SYSTEM.MAXINT components raises no exception. (See test
C36003A.)

(2) NUMERIC ERROR is raised when 'LENGTH is applied to a null
array type with INTEGER'LAST + 2 components. (See test
C36202A.)

(3) NUMERIC ERROR is raised when 'LENGTH is applied to a null
array Type with SYSTEM.MAXINT + 2 components. (See test
C36202B.)

2-3

CONFIGURATION INFORMATION

(4) A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERIC ERROR when the array type is declared. (See
test C52103X.)

(5) A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises NUMERIC ERROR when the array
type is declared. (See test C52104Y.)

(6) A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINT ERROR
either when declared or assigned. Alternatively, an
implementation may accept the declaration. However, lengths
must match in array slice assignments. This implementation
raises NUMERIC ERROR when the array type is declared. (See
test E52103Y.)

(7) In assigning one-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

(8) In assigning two-dimensional array types, the expression is
not evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

f. Discriminated types.

(1) In assigning record types with discriminants, the expression
is evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

g. Aggregates.

(1) In the evaluation of a multi-dimensional aggregate, all
choices are evaluated before checking against the index type.
(See tests C43207A and C43207B.)

(2) In the evaluation of an aggregate containing subaggregates,
all choices are evaluated before being checked for identical
bounds. (See test E43212B.)

(3) CONSTRAINT ERROR is raised after all choices are evaluated
when a bound in a non-null range of a non-null aggregate does
not belong to an index s-ibtype. (See test E43211B.)

2-4

CONFIGURATION INFORMATION

h. Pragmas.

(1) The pragma INLINE is supported for functions and procedures.
(See tests LA3004A..B, EA3004C..D, and CA3004E..F.)

i. Generics

(1) Generic specifications and bodies can be compiled in separate
compilations. (See tests CA1012A, CA2009C, CA2009F, BC3204C,
and BC3205D.)

(2) Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3011A.)

j. Input and output

(1) The package SEQUENTIAL 10 can be instantiated with
unconstrained array types-and record types with discriminants
without defaults. (See tests AE2101C, EE2201D, and EE2201E.)

(2) The package DIRECT 10 can be instantiated with unconstrained
array types and record types with discriminants without
defaults. (See tests AE210lH, EE2401D, and EE2401G.)

(3) Modes IN FILE and OUT FILE are supported for SEOUENTIAL_10.
(See tests CE2102D..E, CE2102N, and CE2102P.)

(4) Modes IN FILE, OUTFILE, and INOUT FILE are supported for
DIRECT 10: (See tests CE2102F, CE210II..J, CE2102R, CE2102T,
and CEfl02V.)

(5) Modes IN FILE and OUT FILE are supported for text files. (See
tests CE5102E and CE3102I..K.)

(6) RESET and DELETE operations are supported for SEQUENTIALI0.
(See tests CE2102G and CE2102X.)

(7) RESET and DELETE operations are supported for DIRECT I0. (See
tests CE2102K and CE2102Y.)

(8) RESET and DELETE operations are supported for text files.
(See tests CE3102F..G, CE3104C, CE3110A, and CE3114A.)

(9) Overwriting to a sequential file truncates to the last element
written. (See test CE2208B.)

(10) Temporary sequential files are given names and deleted when
closed. (See test CE2108A.)

2-5

CONFIGUTRATION INFORMATION

(11) Temporary direct files are given names and deleted when
closed. (See test CE2108C.)

(12) Temporary text files are given namer and deleted when closed.
(See test CE3112A.)

(13) More than one internal file can be associated with each
external file for sequential files when writing or reading.
(See tests CE2107A..E, CE2102L, CE211OB, and CE2111D.)

(14) More than one internal file can be associated with each
external file for direct files when writing or reading. (See
tests CE2107F..H (3 tests), CE2110D, and CE2111H.)

(15) More than one internal file can be associated with each
external file for text files when reading or writing. (See
tests CE3111A..E, CE3114B, and CE3115A.)

2-6

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 44 tests had been withdrawn because of test errors. The AVF
determined that 329 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for 201
executable tests that use floating-point precision exceeding that supported
by the implementation . Modifications to the code, processing, or grading
for 9 tests were required to successfully demonstrate the test objective.
(See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
-A B C D E L

Passed 129 1132 1992 17 28 46 3344

Inapplicable 0 6 323 0 0 0 329

Withdrawn 1 2 35 0 6 0 44

TOTAL 130 1140 2350 17 34 46 3717

3-1

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 198 577 545 245 172 99 161 331 137 36 252 292 299 3344

Inappl 14 72 135 3 '0 0 5 1 0 0 0 77 22 329

Vdrn 1 1 0 0 0 0 0 2 0 0 1 35 4 44

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The following 44 tests were withdrawn from ACVC Version 1.10 at the time of
this validation:

E28005C A39005G B97102E C97116A BC3009B CD2A62D
CD2A63A CD2A63B CD2A63C CD2A63D CD2A66A CD2A66B
CD2A66C CD2A66D CD2A73A CD2A73B CD2A73C CD2A73D
CD2A76A CD2A76B CD2A76C CD2A76D CD2A81G CD2A83G
CD2A84M CD2A84N CD2B15C CD2D1IB CD5007B CD5O1O
ED7004B ED7005C ED7005D ED7006C ED7006D CD71O5A
CD7203B CD7204B CD7205C CD7205D CE2107I CE3111C
CE3301A CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 329 tests were inapplicable for the
reasons indicated:

a. The following 201 tests are not applicable because they .have
floating-point type declarations requiring more digits than
SYSTEM.MAX DIGITS:

C24113L..Y C35705L..Y C35706L..Y C35707L..Y
C35708L..Y C35802L..Z C45241L..Y C45321L..Y
C45421L..Y C45521L..Z C45524L..Z C45621L..Z

3-2

TEST INFORMATION

C45641L..Y C46012L..Z

b. C35702A and B86001T are not applicable because this implementation
supports no predefined type SHORT-FLOAT.

c. The following 16 tests are not applicable because this
implementation does not support a predefined type LONG-INTEGER:

C45231C C45304C C45502C C45503C C45504C
C45504F C45611C C45613C C45614C C45631C
C45632C B52004D C55BO7A B55B09C B86001V
CD7101F

d. C45531M..P (4 tests) and C45532M..P (4 tests) are not applicable
because the value of SYSTEM.MAX MANTISSA is less than 47.

e. C86001F is not applicable because, for this implementation, the
package TEXT 10 is dependent upon package SYSTEM. These tests
recompile pa-kage SYSTEM, making package TEXTIO, and hence
package REPORT, obsolete.

f. B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

g. B86001Z is not applicable because this implementation supports no
predefined floating-point type with a name other than FLOAT,
LONG FLOAT, or SHORT FLOAT.

h. C96005B is not applicable because there are no values of type
DURATION'BASE that are outside the range of DURATION.

i. CD1009C, CD2A41A..B (2 tests), CD2A41E, and CD2A42A..J (10 tests)
are not applicable because this implementation does not support
size clauses for floating point types.

j. CD2A61I and CD2A61J are not applicable because this implementation
does not support size clauses for array types, which imply
compression, with component types of composite or floating point
types. This implementation requires an explicit size clause on
the component type.

k. CD2A84B..I (8 tests) and CD2A84K..L (2 tests) are not applicable
because this implementation does not support size clauses for
access types.

I. CD2A91A..E (5 tests), CD5012J, CD5013S, and CD5014S are not
applicable because this implementation does not support size
clauses for tasks or task types.

m. The following 42 tests are not applicable because this
implementation does not support an address clause when a dynamic
address is applied to a variable requiring initialization:

3-3

TEST INFORMATION

CD5003B..H CD5011A..H CD5O11L..N CD5011Q
CD5011R CD5012A..I CD5012L CD5OI3B
CD5013D CD5013F CD5013H CD5013L
CD5013N CD5013R CD5014T..X

n. CE2102D is inapplicable because this implementation supports
CREATE with IN FILE mode for SEQUENTIAL IO.

o. CE2102E is inapplicable because this implementation supports
CREATE with OUT FILE mode for SEQUENTIAL IO.

p. CE2102F is inapplicable because this implementation supports
CREATE with INOUT FILE mode for DIRECT IO.

q. CE2102I is inapplicable because this implementation supports
CREATE with IN FILE mode for DIRECT IO.

r. CE2102J is inapplicable because this implementation supports
CREATE with OUT FILE mode for DIRECT IO.

s. CE2102N is inapplicable because this implementation supports OPEN
with IN-FILE mode for SEQUENTIAL IO.

t. CE21020 is inapplicable because this implementation supports RESET
with IN FILE mode for SEQUENTIAL IO.

u. CE2102P is inapplicable because this implementation supports OPEN
with OUT FILE mode for SEQUENTIAL IO.

v. CE2102Q is inapplicable because this implementation supports RESET
with OUT FILE mode for SEQUENTIAL IO.

v. CE2102R is inapplicable because this implementation supports OPEN
with INOUT FILE mode for DIRECT IO.

x. CE2102S is inapplicable because this implementation supports RESET
with INOUT FILE mode for DIRECTIO.

y. CE2102T is inapplicable because this implementation supports OPEN
with INFILE mode for DIRECTIO.

z. CE2102U is inapplicable because this implementation supports RESET
with INFILE mode for DIRECT IO.

aa. CE2102V is inapplicable because this implementation supports open
with OUT FILE mode for DIRECT IO.

ab. CE2102W is inapplicable because this implementation suDports RESET
with OUT FILE mode for DIRECT IO.

ac. CE3102E is inapplicable because this implementation supports
CREATE with IN FILE mode for text files.

3-4

TEST INFORMATION

ad. CE3102F is inapplicable because this implementation supports RESET
for text files.

ae. CE3102G is inapplicable because this implementation supports
deletion of an external file for text files.

af. CE3102I is inapplicable because this implementation supports
CREATE with OUT FILE mode for text files.

ag. CE3102J is inapplicable because this implementation supports OPEN
with IN FILE mode for text files.

ah. CE3102K is inapplicable because this implementation supports OPEN
with OUT FILE mode for text files.

ai. CE3115A is not applicable because resetting of an external file
with OUT FILE mode is not supported with multiple internal files
associatea with the same external file when they have different
modes.

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting
a Class B test into subtests so that all errors are detected; and
confirming that messages produced by an executable test demonstrate
conforming behavior that wasn't anticipated by the test (such as raising
one exception instead of another).

Modifications were required for 9 tests.

The following tests were split because syntax errors at one point resulted
in the compiler not detecting other errors in the test:

B24009A B33301B B38003A B38003B B38009A B38009B
B41202A BC1303F BC3005B

3-5

TEST INFORMATION

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced
by the MIPS ADA was submitted to the AVF by the applicant for review.
Analysis of these results demonstrated that the compiler successfully
passed all applicable tests, and the compiler exhibited the expected
behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the MIPS ADA using ACVC Version 1.10 was conducted on-site by a
validation team from the AVF. The configuration in which the testing was
performed is described by the following designations of hardware and
software components:

Host computer: MIPS M/120
Host operating system: RISC/os, 4.0
Target computer: MIPS M/120
Target operating system: RISC/os, 4.0
Compiler: MIPS ADA, Version 2.10

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of
implementation-specific values were customized before being written to the
magnetic tape. Tests requiring modifications during the prevalidation
testing were included in their modified form on the magnetic tape.

The contents of the magnetic tape were loaded onto a MIPS M/100 and then
transferred to the host via NFS.

After the test files were loaded to disk, the full set of tests was
compiled, linked, and all executable tests were run on the MIPS M/120.
Results were printed from the host computer.

The compiler was tested using command scripts provided by MIPS Computer
Systems and reviewed by the validation team. The compiler was tested using
all the following option settings. See Appendix E for a complete listing
of the compiler options for this implementation. The following list of
compiler options includes those options which were invoked by default:

OPTION EFFECT

-gO Have the compiler produce additional symbol
table information for accurate but limited
symbolic debugging of partially optimized

3-6

TEST INFORMATION

code.

-01 Turn on all MIPS optimizations that can be
done quickly and do one pass using the
Verdix optimizer.

Tests were compiled, linked, and executed (as appropriate) using a single
computer. Test output, compilation listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3.7.3 Test Site

Testing was conducted at Sunnyvale CA and was completed on 14 June 1989.

3-7

APPENDIX A

DECLARATION OF CONFORMANCE

MIPS Computer Systems has submitted the following
Declaration of Conformance concerning the MIPS ADA.

A-i

MIPS ComDuter Systems inc 408 72C- 70t.,

928 Arques Avenue TEEX x 51C 60' 5346

M IPS Sunnvvare CA 94086365C PAX s 408 72'-9809

Declaration of Conformance

Compiler Implementor: MIPS Computer Systems
Ada Validation Facility: ASD/SCEL. Wrichr-Patterson AFB OH J5433-6503
Ada Compiler Validation Car:ibilitv (ACVC) Version: 1.10

Base Configuration

Base Compiler name: MIPS ADA Version: 2.10
Host Architecture ISA: MIPS M/120 OS&VER: RISC/os 4.0
Target Architecutre ISA: MIPS M/120 OS&VER: RISC/os 4.0

Derived Compiler Registration

Base Compiler name: MIPS ADA Version: 2.10
Host Architecture ISA: MIPS M/500, M/800, M/1000, M/2000, RC2030, RS2030.

OS&VER: RISC/os 4.0
Target Architecutre ISA: Any host self-targeted. OS&VER: RISC/os 4.0

Implementor's Declaration

I, the undersigned, representing MIPS Computer Systems, have implemented no deliberate
extensions to the Ada Language Standard ANSI/MIL-STD-1S15A in the compiler(s) listed in
this declaration. I declare that MIPS Computer Systems is the owner of record of the Ada
compiler(s') in conformance to ANSYIMIL-STD-1S15A. All certificates and registrations for
Ada language compiler(s) listed in this declartion shall be made only in the owner's corporate
name.

. . - - --- Date: ' ,d
MIPS ComputerSi.stems
Lan' Weber, Vice President

./

Owner's Declaration

I, the undersigned, representing MIPS Computer Systems, take full responsibility for impic-
mentation and maintenance for the Ada compiler(s) listed above, and agree to the public dis-
closure of the final Validation Summary Report. I declare that all of the Ada language com-
pilers listed, and their host/target performance are in compliance with the Ada Language
Standard ANSI/MIL-STD-1815A.

itc
-~ ..+ K_ J,-Date: lI<

MIPS Compyter Systems
LArn,' Webtr, Vice President

A-2

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of the MIPS ADA, Version 2.10, as described in this
Appendix, are provided by MIPS Computer Systems. Unless specifically noted
otherwise, references in this Appendix are to compiler documentation and
not to this report. Implementation-specific portions of the package
STANDARD, which are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;
type SHORT INTEGER is range -32768 .. 32767;
type TINYINTEGER is range -128 .. 127;

type FLOAT is digits 6 range -3.40282E+38 .. 3.40282E+38;
type LONGFLOAT is digits 15

range -8.988465674312E+307 .. 8.988465674312E+308;

type DURATION is delta 1.OOOOOE-03 range -2147483.648 . -2147483.647;

end STANDARD;

B-I

ATTACIUMENT I

APPENDIX F. Implementation-Dependent Characteristics

1. Implementation-Dependent Pragmas

1.1. INLINEONLY Pragma

The INLINE.ONLY pragma, when used in the same way as progma INLINE, indicates to the
compiler that the subprogram must always be inlined. This pragma also suppresses the genera-
tion of a callable version of the routine which save code space.

1.. BUILT..N Pragma

The BUILT-IN pragma is used in the implementation of some predefined Ada packages, but
provides no user access. It is used only to implement code bodies for which no actual Ada
body can be provided.

1.3. SHARECODE Pragma

The SHARE-CODE pragma takes the name of a generic instantiation or a generic unit as the
first argument and one of the identifiers TRUE or FALSE as the second argument. This
pragma is only allowed immediately at the place of a declarative item in a declarative part or
package specification, or after a library unit in a compilation, but before any subsequent com-
pilation unit.

When the first argument is a generic unit the pragma applies to all instantiations of that gen-
eric. When the first argument is the name of a generic instantiation the pragma applies only to
the specified instantiation, or overloaded instantiations.

If the second argument is TRUE the compiler will try to share code generated for a generic
instantiation with code generated for other instantiations of the same generic. When the
second argument is FALSE each instantiation will get a unique copy of the generated code.
The extent to which code is shared between instantiations depends on this pragma and the
kind of generic formal parameters declared for the generic unit.

The name pragma SHARE...BODY is also recognized by the implementation and has the same
effect as SHARECODE. It is included for compatability with earlier versions of IIPS
VADS.

1.4. NO-IMAGE Pragma

The pragrna suppresses the generation of the image array used for the IMAGE attribute of
enumeration types. This eliminates the overhead required to store the array in the executable
image. A reference to X'IMAGE will be accepted by the compiler if the pragma NODIAGE
has been given.

1.5. EXTERNALNAME Pragma

The EXTERNAL.NAME pragma takes the name of a subprogram or variable defined in Ada
and allows the user to specify a different external name that may be used to reference the
entity from other languages. The pragma is allowed at the place of a declarative item in a
package specification and must apply to an object declared earlier in the same package
specification.

B-2

1.6. INTERFACEOBJECT Pragma

The INTERFACEOBJECT pragma takes the name of a a variable defined in another
language and allows it to be referenced directly in Ada. The pragma will replace all
occurrences of the variable name with an external reference to the second, link-argument.
The pragma is allowed at the place of a declarative item in a package specification and must
apply to an object declared earlier in the same package specification. The object must be
declared as a scalar or an access type. The object cannot be any of the following:

a loop variable,
a constant,
an initialized variable,
an array, or
a record.

1.7. IMPLICIT_CODE Pragma

Takes one of the identifiers ON or OFF as the single argument. This pragma is only allowed
witnin a machine code procedure. It specifies that implicit code generated by the compiler be
allowed or disallowed. A warning is issued if OFF is used and any implicit code needs to be
generated. The default is ON.
2. Implementation of Predefined Pragmas

2.1. CONTROLLED

This pragma is recognized by the implementation but has no effect.

2.2. ELABORATE

This pragma is implemented as described in Appendix B of the Ada RUM.

2.3. INLINE

This pragma is implemented as described in Appendix B of the Ada RM.

2.4. INTERFACE

-This pragma supports calls to 'C' and FORTRAN functions. The Ada subprograms can be
either functions or procedures. The types of parameters and the result type for functions must
be scalar, access or the predefined type ADDRESS in SYSTEM. All parameters must have
mode IN. Record and array objects can be passed by reference using the ADDRESS attri-
bute.

2.5. LIST

This pragna is implemented as described in Appendix B of the Ada RM.

2.6. MEMORY-SIZE

This pragmna is recognized by the implementation. The implementation does not allow SYS-
TEM to be modified by means of pragmas, the SYSTEM package must be recompiled.

2.7. NOT.ELABORATED

This pragma can only appear in a library package specification. It indicates that the package
will not be elaborated because it is either part of the RTS, a configuration package or an Ada
package that is referen'ed from a language other than Ada. The presence of this pragna
suppresses the generation of elaboration code and issues warnings if elaboration code is
required.

B-3

2.8. OPTIMIZE

This pragma is recognized by the implementation but has no effect.

2.9. PACK

This pragma will cause the compiler to choose a non-aligned representation for composite
types. It will not causes objects to be packed at the bit level.

2.10. PAGE

This pragrna is implemented as described in Appendix B of the Ada RM.

2.11. PRIORITY

This pragma is implemented as described in Appendix B of the Ada RM.

2.12. SHARED

This pragma is recognized by the implementation but has no effect.

2.13. STORAGEUNIT

This pragma is recognized by the implementation. The implementation does not allow SYS-
TEM to be modified by means of pragmas, the SYSTEM package must be recompiled.

2.14. SUPPRESS

This pragma is implemented as described, except that RANGE-CHECK and
DIVISIONCHECK cannot be supressed.

2.15. SYSTEM_NAME

This pragnia is recognized by the implementation. The implementation does not allow SYS-
TEM to be modified by means of pragmas, the SYSTEM package must be recompiled.

3. Implementation-Dependent Attributes

3.1. P'REF

This attribute can be used to convert an integer to an address.

B-4

4. Specification of Package SYSTM

package SYS1UDA
is

type NAIE is (R!5S);

SY57BVJ'4M*E constant WA1E :- J5CC;

SlUAM-NIT constant a.,
MD3X-SI Econstant 16-.777-2.16;

.Sysaim-D~tndent Named Humbera

hwI constant -2-147_.483_.643;
mxw.XN consant - .147-4.83_.647;
WAX..01013 constant 15;
hKX3ALM 33ISA :constant :- 31;
FINE..DE..T : constant 2."-3)
M!CC. constant 0.01;

-Other Syatims-dependent Declarations

subtype MlR17Y1~ is INIM rage 0 .. 99;

h4AX=_3lE :integer :- 64*1024;

type AOES is private;

NO-AM. :constant AMPESS;

function fYSCAL.AOES(!: ITl(I) return AM3;
functison AC...Gr(A. 3: AM.lS3) return BOOLEAN;
function AMR_.r(A. B: ARS3) return BOOL.EAN;
function AMRC(A. 3: AMRES) return BOOLEA;
function AMR_.J.(A. B: AMES3) return BOOLAN;
function AW...D!FP(A. 3: AMES3) return S?4'lER;
funct ion INR40W~A: ACCESS; INM: INTBOE) return AORES;
function DERARA AMRES; DEC: thTr~-) return ACE3;

function *>'(A. B: ADDRES) return BOOLEAN rennmes AMR-.Or;
function *<(A. B: ACRES) return BOOLEAN renes AMRLT;
function '>-'(A, B: ACRES) return BOOLEAN renaes AM-E
functiton '<-*(A, B: AMESS) return BOOLAN renames AD..J.E;
fuinct ion '-(A. B: ACCESS) return IN8!E reums AMDIFF;
function '(A; AMRESS; INC: INTO) return ACCISS resues INRACR
function '-(A: ADDES; CEC: INWE) return ACES renames DERAR

praline n I ano(ARG) ;
pragine inline(ADJ.T);
pragims ink ine(A-C);
pragune inline(APLE);
praliue inline(A..RDIFF);
preate iit ia(I NR. R) ;
pragume inline(DER-AjR);
pragme in! :ne(PHYS1CAL-AES);

p r 1 a t e

t ype AVRS 3is new integer;

NOARzconstant AMRMS :- 0;

end SYSMMhI

5. Restrictions On Representation Clauses

5.1. Pragma PACK
In the absence of pragma PACK record components are padded so as to provide for efficient
access by the target hardware, pragma PACK applied to a record eliminate the padding where
possible. Pragma PACK has no other effect on the storage allocated for record components a
record representation is required.

5.2. Record Representation Clauses
For scalar types a represenation clause will pack to the number of bits required to represent
the range of the subtype. A record representation applied to a composite type wvill not cause
the object to be packed to fit in the space required. An explicit representation clause must be
given for the component tye. An en-or will be issued if there is insufficient space allocated.

B- 5

5.3. Address Clauses

Address clauses are supported for variables and constants that have no initial values in their
declaration.

5.4. Interrupts

Interupt entries are supported through signals.

5.5. Representation Attributes

The ADDRESS attribute is supported for the following entities, but a meaningless value is
returned.

Packages
Tasks
Labels
Entries

B-6

6. Conventions for Implementadon-generated Names

There are no implementation-generated names.

7. Interpretation of Expressions in Address Clauses

Address clauses are supported for constants and variables.

8. Restrictions on Unchecked Conversions

None.

9. Restrictions on Unchecked Deallocations

None.

10. Implementation Characteristics of I/O Packages

Instantiations of DIRECTO use the value MAX.RECSIZE as the record size (expressed in
STORAGEUNITS) when the size of ELEMENT-TYPE exceeds that value. For example for
unconstrained arrays such as string where ELEMENTTYPE'SIZE is very large,
MAX..REC.SIZE is used instead. MAXRECORDSIZE is defined in SYSTEM and can be
changed by a program before instantiating DIRECTJIO to provide an upper limit on the
record size. In any case the maximum size supported is 1024 x 1024 x STORAGEUNIT bits.
DIRBCTIO will raise USE-ERROR if MAX..,RECSIZB exceeds this absolute limit.

Instantiations of SEQUENTIA.LJO use the value MAX..RECSIZE as the record size
(expressed in STORAGEUNTTS) when the size of ELEMENT-TYPE exceeds that value.
For example for unconstrained arrays such as string where ELEMENTTYPE'SIZE is very
large, MAX-RECSIZE is used instead. MAXYRECORDSIZE is defined in SYSTEM and
can be changed by a program before instantiating I1NTEGERJO to provide an upper limit on
the record size. SEQUENTIA.LIO imposes no imit on MAXRECSIZE.

11. Implementation Limits

The following limits are actually enforced by the implementation. It is not intended to imply
that resources up to or even near these limits are available to every program.

11.1. Line Length

The implementation supports a maximum line length of 500 characters including the end of
line character.

11.2. Record and Array Sizes

The maximum size of a statically sized array type is 24,000,000 x STORAGE-UNITS. The
maximum size of a statically sized record type is 24,000,000 x STORAGE-UNITS. A record
type or array type declaration that exceeds these limits will generate a warning message.

11.3. Default Stack Size for Tasks

In the absence of an explicit STORAGE-SIZE length specification every task except the main
program is allocated a fixed size stack of 10,240 STORAGEUNrS. This is the value
returned by TrSTORAGESIZE for a task type T.

11.4. Default Collection Size
In the absence of an explicit STORAGE-SIZE length attribute the default collection size for
an access type is 100 times the size of the designated type. This is the value returned by

B-7

T'STORAGESIZE for an access type T.

11.5. Limit on Declared Objects

There is an absolute limit of 6,000,000 x STORAGE-UNITS for objects declared statically
within a compilation unit. If this value is exceeded the compiler will terminate the compilation
of the unit with a FATAL error message.

B-8

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaning Value

$ACC SIZE 32
Xn integer literal whose value
is the number of bits sufficient
to hold any value of an access
type.

$BIG ID1 (1..498 => 'A', 499=> '1')
An identifier the size of the
maximum input line length which
is identical to $BIG ID2 except
for the last character.

$BIG ID2 (1..498 => 'A', 499=> '2')
An identifier the size of the
maximum input line length which
is identical to SBIG IDi except
for the last character.

$BIG ID3 (1..249 W> 'A', 250.> '3',
Tkn identifier the size of the 251..499 .> 'A')
maximum input line length which
is identical to SBIG ID4 except
for a character near-the middle.

C-I

TEST PARAMETERS

Name and Meaning Value

$BIG ID4 (1..249 => 'A', 250-> '4',
An identifier the size of the 251..499 .> 'A')
maximum input line length which
is identical to SBIG ID3 except
for a character near-the middle.

$BIG INT LIT (1..496 => '0', 497..499 .> "298")
An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

$BIG REAL LIT (l..493 .> '0', 494..499 a> "69.OE1")
X universal real literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

$BIG STRING1 (1 -> '"' 2..251 .> 'A', 252 => '"')
A string literal which when
catenated with BIG STRING2
yields the image of BIGID1.

$BIG STRING2 (1 => " 2..249 -> 'A', 250 .> '1',
X string literal which when 251 w> '"')
catenated to the end of
BIG STRINGi yields the image of
BIG-ID1.

SBLANKS (1..479 -> ' ')
A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNT LAST 2_147 483 647
A universal integer
literal whose value -is
TEXT IO.COUNT'LAST.

SDEFAULT MEM SIZE 16 777 216
An integer literal whose value - -

is SYSTEM.MEMORYSIZE.

$DEFAULT STOR UNIT 8
An integer literal whose value
is SYSTEM.STORAGEUNIT.

C-2

TEST PARAMETERS

Name and Meaning Value

$DEFAULT SYS NAME RISCOS
The - value of the constant
SYSTEM.SYSTEM NAME.

$DELTA DOC 0.0000000004656612873077392578125
A real literal whose value is
SYSTEM.FINEDELTA.

$FIELD LAST 2_147_483_647
A universal integer
literal whose value is
TEXT IO.FIELD'LAST.

$FIXED NAME NO SUCH TYPE
The name of a predefined
fixed-point type other than
DURATION.

$FLOAT NAME NOSUCHFIXEDTYPE
The name of a predefined
floating-point type other than
FLOAT, SHORTFLOAT, or
LONGFLOAT.

SGREATER THAN DURATION 100_000.0
A univerial real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

$GREATER THAN DURATION BASE LAST 10_000_000.0
A universal real literal that is
greater than DUR.TION'BASE'LAST.

$HIGH PRIORITY 99
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

$ILLEGAL EXTERNAL FILE NAME1 ILLEGAL/FILENAME/2{]$Z2102C*.DAT
An external file name which
contains invalid characters.

$ILLEGAL EXTERNAL FILE NAME2 ILLEGAL/FILENAME/CE2102C*.DAT
An external file name which
is too long.

$INTEGER FIRST -2 147_483_648
A universal integer literal
whose value is INTEGER'FIRST.

C-3

TEST PARAMETERS

Name and Meaning Value

SINTEGER LAST 2_147 483 647
A universal integer literal
whose value is INTEGER'LAST.

$INTEGER LAST PLUS 1 2_147483648
A universal - integer literal
whose value is INTEGER'LAST + 1.

$LESS THAN DURATION -100_000.0
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

SLESS THAN DURATION BASE FIRST -10 000_000.0
A universal real literal that is
less than DURATION'BASE'FIRST.

SLOW PRIORITY 0
An integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

$MANTISSA DOC 31
An integer literal whose value
is SYSTEM.MAXMANTISSA.

$MAX DIGITS 15
Raximum digits supported for
floating-point types.

SMAX IN LEN 499
Raximum input line length
permitted by the implementation.

SMAX INT 2147483647
A universal integer literal
whose value is SYSTEM.MAXINT.

$MAX INT PLUS 1 2_147 483 648
K unive-rsal integer literal
whose value is SYSTEM.MAXINT+1.

$MAX LEN INT BASED LITERAL (1..2 -> "2:", 3..496 => '0',
K universal - integer based 497..499 => "11:")
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be MAXINLEN
long.

C-4

TEST PARAMETERS

Name and Meaning Value

SMAX LEN REAL BASED LITERAL (1.3 -> "16:", 4..495 -> ''
universal real based literal 496..499 => "F.E:")

whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAX IN LEN long.

SMAX STRING LITERAL (1 -> '"', 2..498 a> 'A', 499 -> '"')
X str~ng literal of size
MAXINLEN, including the quote
characters.

$MIN INT -2147483648
W universal integer literal
whose value is SYSTEM.MIN INT.

$MIN TASK SIZE 32
An inTeger literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
"NULL;" as the only statement in
its body.

$NAME TINY INTEGER
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT FLOAT, SHORT INTEGER,
LONGFLOAT, or LONG-INTEGER.

SNAME LIST RISCOS
A-list of enumeration literals
in the type SYSTEM.NAME,
teparated by commas.

SNEG BASED INT 16#FFFFFFFD#
4 based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX INT.

SNEW MEM SIZE 16_777 216
In integer literal whose value
is a permitted argument for
pragma MEMORY SIZE, other than
$DEFAULT MEM SIZE. If there is
no other value, then use
SDEFAULTMEMSIZE.

C-5

TEST PARAMETERS

Name and Meaning Value

SNEU STOR UNIT 8
An integer literal whose value
is a permitted argument for
pragma STORAGE UNIT, other than
SDEFAULT STOR UNIT. If there is
no other permitted value, then
use value of SYSTEM.STORAGEUNIT.

SNEW SYS NAME RISCOS
W value of the type SYSTEM.NAME,
other than $DEFAULT SYS NAME. If
there is only one value-of that
type, then use that value.

$TASK SIZE 32
AR integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one 'IN OUT'
parameter.

STICK 0.01
A real literal whose value is
SYSTEM.TICK.

C-6

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 44 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
AI-ddddd is to an Ada Commentary.

a. E28005C: This test expects that the string "-- TOP OF PAGE. --63" of
line 204 will appear at the top of the listing page due to a pragmz
PAGE in line 203; but line 203 contains text that follows the pragma,
and it is this text that must appear at the top of the page.

b. A39005G: This test unreasonably expects a component clause to pack an
array component into a minimum size (line 30).

c. B97102E: This test contains an unintended illegality: a select
statement contains a null statement at the place of a selective wait
alternative (line 31).

d. C97116A: This test contains race conditions, and it assumes that
guards are evaluated indivisibly. A conforming implementation may use
interleaved execution in such a way that the evaluation of the guards
at lines 50 & 54 and the execution of task CHANGING OF THE GUARD
results in a call to REPORT.FAILED at one of lines 52 or 56. -

e. BC3009B: This test wrongly expects that circular instantiations will
be detected in several compilation units even though none of the units
is illegal with respect to the units it depends on; by AI-00256, the
illegality need not be detected until execution is attempted (line
95).

f. CD2A62D: This test wrongly requires that an array object's size be no
greater than 10 although its subtype's size was specified to be 40
(line 137).

g. CD2A63A..D, CD2A66A..D, CD2A73A..D, and CD2A76A..D (16 tests): These

D-1

WITHDRAWN TESTS

tests wrongly attempt to check the size of objects of a derived type
(for which a 'SIZE length clause is given) by passing them to a
derived subprogram (which implicitly converts them to the parent type
(Ada standard 3.4:14)). Additionally, they use the 'SIZE length
clause and attribute, whose interpretation is considered problematic
by the WG9 ARG.

h. CD2A81G, CD2A83G, CD2A84M..N, and CD50110 (5 tests): These tests
assume that dependent tasks will terminate while the main program
executes a loop that simply tests for task termination; this is not
the case, and the main program may loop indefinitely (lines 74, 85,
86, 96, and 58, respectively).

i. CD2B15C and CD7205C: These tests expect that a 'STORAGE SIZE length
clause provides precise control over the number of designated objects
in a collection; the Ada standard 13.2:15 allows that such control
must not be expected.

j. CD2D1lB: This test gives a SMALL representation clause for a derived
fixed-point type (at line 30) that defines a set of model numbers that
are not necessarily represented in the parent type; by Commentary
AI-00099, all model numbers of a derived fixed-point type must be
representable values of the parent type.

k. CD5007B: This test wrongly expects an implicitly declared subprogram
to be at the address that is specified for an unrelated subprogram
(line 303).

1. ED7004B, ED7005C..D, and ED7006C..D (5 tests): These tests check
various aspects of the use of the three SYSTEM pragmas; the AVO
withdraws these tests as being inappropriate for validation.

m. CD71O5A: This test requires that successive calls to CALENDAR.CLOCK
change by at least SYSTEM.TICK; however, by Commentary AI-00201, it is
only the expected frequency of change that must be at least
SYSTEM.TICK--particular instances of change may be less (line 29).

n. CD7203B and CD7204B: These tests use the 'SIZE length clause and
attribute, whose interpretation is considered problematic by the WG9
ARG.

o. CD7205D: This test checks an invalid test objective: it treats the
specification of storage to be reserved for a task's activation as
though it were like the specification of storage for a collection.

p. CE21071: This test requires that objects of two similar scalar types
be distinguished when read from a file--DATA ERROR is expected to be
raised by an attempt to read one object- as of the other type.
However, it is not clear exactly how the Ada standard 14.2.4:4 is to
be interpreted; thus, this test objective is not considered valid
(line 90).

D-2

WITHDRAWN TESTS

q. CE3111C: This test requires certain behavior, when two files are
associated with the same external file, that is not required by the
Ada standard.

r. CE3301A: This test contains several calls to ENDOFLINE and
END OF PAGE that have no parameter: these calls were intended to
specify a file, not to refer to STANDARDINPUT (lines 103, 107, 118,
132, and 136).

s. CE3411B: This test Lequires that a text file's column number be set to
COUNT'LAST in order to check that LAYOUTERROR is raised by a
subsequent PUT operation. But the former operation will generally
raise an exception due to a lack of available disk space, and the test
would thus encumber validation testing.

D-3

APPENDIX E

COMPILER OPTIONS AS SUPPLIED BY MIPS COMPUTER SYSTEMS

Compiler: MIPS ADA, Version 2.10

ACVC Version: 1.10

E-1

ADA (1) VADS Reference Manual ADA (1)

NAMI

ada - Ada compiler

SYNTAX
ada [options] (ada-surcc.a]... [linker-options] [object-file.o]...

DESCRIPTION
The command ada executes the Ada compiler and compiles the named Ada source file. end-
ing with the la suffix. The file must reside in a VADS library directory. The ada.lib file in
this directory is modified after each Ada unit is compiled.

The object for each compiled Ada unit is left in a file with with the same name as that of the
source with .01, .02, etc. substituted for .a. The -o option can be used to produce an execut-
able with a name other than a.out, the default. For cross compilers, the default name is
a.vox.

By default, ada produces only object and net files. If the -M option is used, the compiler
automaticall' invokes a.ld and builds a complete program wih the named library unit as the
main program.

Non-Ada object files (.o files produced by a compiler for another language) may be given as
arguments to ada. These files will be passed on to the linker and will be linked with the
specified Ada object files.

Command line options may be specified in any order, but the order of compilation and the
order of the files to be passed to the linker can be significant.

Several VADS compilers may be simultaneously available on a single system. Because the
ada command in any VADS-location/bin on a system will execute the correct compiler com-
ponents based upon visible library directives, the option -sh is provided to print the name of
the components actually executed.

Program listings with a disassembly of machine instructions are generated by a.db or a.das.

OPTIONS
-a file.name (archive) treat file-name as an ar file. Since archive files end with .a, -a

is used to distinguish archive files from Ada source files.

-d (dependencies) analyze for dependencies only. Do not do semantic
analysis or code generation. Update the library, marking any defined
units as uncompiled. The -d option is used by a.make to establish
dependencies among new files.

-e (error) process compilation error messages using a.error and direct it to
stdout.- only the source lines containing errors are listed. Only one -e
or -E option should be used.

-E

-E file

-E directory (error output) without a file or directory argument, ads processes error
messages using a.error and directs the output to stdout; the raw error
messages are left in ada-source.err. If a file pathname is given, the raw
error messages are placed in that file. If a directory argument is sup-
plied, the raw error output is placed in dir/source.err. Only one -e or
-E option should be used.

-el (error listing) intersperse error messages among source lines and direct
to stdout.

-El

E-2
MIPS Computer Systems, Inc.

ADA (1) VADS Reference Manual ADA (1)

-El file

-El directorv (error listing) same as the -E option, except that source listing with
errors is produced.

-ev (error vi) process syntax error messages using a.error, embed them in
the source file, and call the environment editor ERROR_.EDITOR. (If
ERROR-EDITOR is defined, the environment variable
ERROR-PATTERN should also be defined. ERROR'ATTERN is an
editor search command that locales the first occurrence of '#7#' in the
error file.) If no editor is specifed, call vi.

-gO Have the compiler produce additional symbol table information for
accurate but limited symbolic debugging of partially optimixed code.

-- g "or" -g2 Have the compiler produce additinal symbol table information for full
symbolic debugging and not do optimizations that limit full symbolic
debugging. -g2 is the default.

-g 3 Have the compiler produce additional sybol table information for full
symbolic debugging for fully optimized code. This option makes the
debugger inaccurate.

-1 file-abbreviation (link) Link this library file. (Do not space between the -land the file
abbreviation.) See also

Operating system documentation, ld(1).

-M unit-name (main) produce an executable program using the named unit as the main
program. The unit must be either a parameterless procedure or a
parameterless function returning an integer. The executable program
will be left in the file a.out unless overridden with the -o option.

-M adasource.a (main) like -M unit-name, except that the unit name is assumed to be
the root name of the .a file (for foo.a the unit isfoo). Only one .a file
may be preceded by -M.

-o executablefile (output) this option is to be used in conjunction with the -M option.
executable.file is the name of the executable rather than the default
a.out.

-00 Turn off all optimizations.

-01 Turn on all MIPS optimizations that can be done quickly and do one'
pass using the Verdix optimizer. This is the default.

-02 Invoke the MIPS global ucode optimizer and optimize as far as possible
using the Verdix optimizer. (MIPS global ucode optimizer not sup-
ported in this release.) -0 is the same as -02.

-R VADS-library (recompile instantiation) force analysis of all generic instantiations, caus-
ing reinstantiation of any that are out of date.

-S (suppress) apply pragma SUPPRESS to the entire compilation for all
suppressible checks.

-T (timing) print timing information for the compilation.

-v (verbose) print compiler version number, date and time of compilation,
name of file compiled, command input line, total compilation time, and
error summary line.

-w (warnings) suppress warning diagnostics.

E-3
MIPS Computer Systems, Inc.

ADA (1) VADS Reference Manual ADA (2)

-G Num SpeciY the maximum size, in bytes, of a data item thal is to be
accessed from the global pointer. Num is assumed to be a decimal
number. If Num is zero, no data is accessed from the global pointer.
The default value for Num is 8 bytes.

-W c argl,[arg2...] Pass the argument[s] argi to a compiler pass, where c is one of the char-
acters in the next table that designates the pass.

Pass Character
include h
backend D
driver

ucgen G
ujoin j
uld u

usplit s
umesrge m

uopt 0
ugen c
asl b

SEE ALSO
[VADS Reference] a.db, a.error, a.ld, a.mklib, a.das and Operating system documentation,
ld(1)

DIAGNOSTICS
The diagnostics produced by the VADS compiler are intended to be self-explanato'. Most
refer to the RM. Each RM reference includes a section number and optionally, a paragraph
number enclosed in parentheses.

MIPS Computer Systems, Inc. E-4

